41 research outputs found

    Charge structure in volcanic plumes: a comparison of plume properties predicted by an integral plume model to observations of volcanic lightning during the 2010 eruption of Eyjafjallajökull, Iceland

    Get PDF
    Cancer is a heterogeneous disease with different combinations of genetic alterations driving its development in different individuals. We introduce CoMEt, an algorithm to identify combinations of alterations that exhibit a pattern of mutual exclusivity across individuals, often observed for alterations in the same pathway. CoMEt includes an exact statistical test for mutual exclusivity and techniques to perform simultaneous analysis of multiple sets of mutually exclusive and subtype-specific alterations. We demonstrate that CoMEt outperforms existing approaches on simulated and real data. We apply CoMEt to five different cancer types, identifying both known cancer genes and pathways, and novel putative cancer genes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-015-0700-7) contains supplementary material, which is available to authorized users

    Neighbours of cancer-related proteins have key influence on pathogenesis and could increase the drug target space for anticancer therapies

    Get PDF
    Even targeted chemotherapies against solid cancers show a moderate success increasing the need to novel targeting strategies. To address this problem, we designed a systems-level approach investigating the neighbourhood of mutated or differentially expressed cancer-related proteins in four major solid cancers (colon, breast, liver and lung). Using signalling and protein–protein interaction network resources integrated with mutational and expression datasets, we analysed the properties of the direct and indirect interactors (first and second neighbours) of cancer-related proteins, not found previously related to the given cancer type. We found that first neighbours have at least as high degree, betweenness centrality and clustering coefficient as cancer-related proteins themselves, indicating a previously unknown central network position. We identified a complementary strategy for mutated and differentially expressed proteins, where the affect of differentially expressed proteins having smaller network centrality is compensated with high centrality first neighbours. These first neighbours can be considered as key, so far hidden, components in cancer rewiring, with similar importance as mutated proteins. These observations strikingly suggest targeting first neighbours as a novel strategy for disrupting cancer-specific networks. Remarkably, our survey revealed 223 marketed drugs already targeting first neighbour proteins but applied mostly outside oncology, providing a potential list for drug repurposing against solid cancers. For the very central first neighbours, whose direct targeting would cause several side effects, we suggest a cancer-mimicking strategy by targeting their interactors (second neighbours of cancer-related proteins, having a central protein affecting position, similarly to the cancer-related proteins). Hence, we propose to include first neighbours to network medicine based approaches for (but not limited to) anticancer therapies

    Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesPersistent insomnia is among the most frequent complaints in general practice. To identify genetic factors for insomnia complaints, we performed a genome-wide association study (GWAS) and a genome-wide gene-based association study (GWGAS) in 113,006 individuals. We identify three loci and seven genes associated with insomnia complaints, with the associations for one locus and five genes supported by joint analysis with an independent sample (n = 7,565). Our top association (MEIS1, P < 5 × 10-8) has previously been implicated in restless legs syndrome (RLS). Additional analyses favor the hypothesis that MEIS1 exhibits pleiotropy for insomnia and RLS and show that the observed association with insomnia complaints cannot be explained only by the presence of an RLS subgroup within the cases. Sex-specific analyses suggest that there are different genetic architectures between the sexes in addition to shared genetic factors. We show substantial positive genetic correlation of insomnia complaints with internalizing personality traits and metabolic traits and negative correlation with subjective well-being and educational attainment. These findings provide new insight into the genetic architecture of insomnia.Netherlands Organization for Scientific Research NWO Brain & Cognition 433-09-228 European Research Council ERC-ADG-2014-671084 INSOMNIA Netherlands Scientific Organization (NWO) VU University (Amsterdam, the Netherlands) Dutch Brain Foundation Helmholtz Zentrum Munchen - German Federal Ministry of Education and Research state of Bavaria German Migraine & Headache Society (DMKG) Almirall AstraZeneca Berlin Chemie Boehringer Boots Health Care GlaxoSmithKline Janssen Cilag McNeil Pharma MSD Sharp Dohme Pfizer Institute of Epidemiology and Social Medicine at the University of Munster German Ministry of Education and Research (BMBF) German Restless Legs Patient Organisation (RLS Deutsche Restless Legs Vereinigung) Swiss RLS Patient Association (Schweizerische Restless Legs Selbsthilfegruppe

    On the sample complexity of cancer pathways identification

    Get PDF
    none3Advances in DNA sequencing technologies have enabled large cancer sequencing studies, collecting somatic mutation data from a large number of cancer patients. One of the main goals of these studies is the identification of all cancer genes--genes associated with cancer. Its achievement is complicated by the extensive mutational heterogeneity of cancer, due to the fact that important mutations in cancer target combinations of genes (i.e., pathways). Recently, the pattern of mutual exclusivity among mutations in a cancer pathway has been observed, and methods that find significant combinations of cancer genes by detecting mutual exclusivity have been proposed. A key question in the analysis of mutual exclusivity is the computation of the minimum number of samples required to reliably find a meaningful set of mutually exclusive mutations in the data, or conclude that there is no such set. In general, the problem of determining the sample complexity, or the number of samples required to identify significant combinations of features, of genomic problems is largely unexplored. In this work we propose a framework to analyze the sample complexity of problems that arise in the study of genomic datasets. Our framework is based on tools from combinatorial analysis and statistical learning theory that have been used for the analysis of machine learning and probably approximately correct (PAC) learning. We use our framework to analyze the problem of the identification of cancer pathways through mutual exclusivity analysis. We analytically derive matching upper and lower bounds on the sample complexity of the problem, showing that sample sizes much larger than currently available may be required to identify all the cancer genes in a pathway. We also provide two algorithms to find a cancer pathway from a large genomic dataset. On simulated and cancer data, we show that our algorithms can be used to identify cancer pathways from large genomic datasets.noneVandin, Fabio; Raphael, Benjamin J; Upfal, EliVandin, Fabio; Raphael, Benjamin J; Upfal, El
    corecore